
Cyril Crassin, Fabrice Neyret,

INRIA Rhône-Alpes & Grenoble Univ.

Sylvain Lefebvre, Elmar Eisemann, Miguel Sainz

INRIA Sophia-Antipolis Saarland Univ./MPI NVIDIA Corporation

GigaVoxels Effects In Video Games

A (very) brief history of voxels

 Rings a bell?

Comanche (Novalogic)

Outcast (Appeal Software)

V
o

x
e
l

g
ri
d

ill
u

s
tr

a
ti
o

n

c
o

u
rt

e
s
y

o
f

“R
e
a
l-

T
im

e

V
o

lu
m

e
G
ra
p
h
ic
s
”

Voxel Engines in Special effects

 Natural representation
 Fluid, smoke, scans

 Volumetric phenomena
 Semi-transparency

 Unified rendering
representation
 Particles, meshes, fluids…

Lord of the Rings, Digital Domain

The Day After Tomorrow, Digital Domain

XXX, Digital Domain

Voxels in video games ?

 Renewed interest

 Jon Olick, Siggraph 08

 John Carmack
[Olick08]

Jon Olick,

John Carmack

Why bother with voxels?

 Exploding number of triangles

 Sub-pixel triangles not GPU-friendly

(might improve but not yet REYES pipeline)

 Filtering remains an issue

 Multi-sampling expensive

 Geometric LOD ill-defined

 Clouds, smoke, fluids, etc.

 Participating media?
The Mummy 3, Digital Domain/Rhythm&Hues

Voxels

 Natural for complex geometries
 LOD defined

 “Unique Geometry” (no additional authoring)

 Structured data
 Convenient to traverse

 But:
 Memory is a key issue!

○ E.g. 2048 ^ 3 x RGBA = 32 GB!!!
○ Transfer CPU GPU expensive

 No fast renderer available

GigaVoxels

 I3D2009 paper [CNLE09]

 Unified geometry & volumetric

phenomena

 Full pipeline to render

infinite resolution voxel

objects/scenes

GigaVoxels pipeline

GPU

CPU

Sparse Voxel

Octree

Mipmap

Pyramid

On-disc

data

producer

Now implemented with

Update structure

GPU

Cache

manager

Output ImageVoxel Ray-

Tracer

[BNMBC08]

GigaVoxels Data Structure

Sparse Voxel

Octree

MipMap

Pyramid

GPU

CPU

Update structure

Output ImageRay-Tracer

GPU

Cache

manager

On-disc

data

producer

Sparse Voxel MipMap Pyramid

 Composed structureData structure

Generalized Octree

• Empty space compaction

Bricks of voxels

• Linked by octree nodes

• Store opacity, color, normal

Tower model courtesy of Erklaerbar, made with 3DCoat

Brick pool

C
U

D
A

 3
D

 A
rr

a
y
 (

T
e
x
tu

re
)

Node pool

L
in

e
a
r

M
e
m

o
ry

Octree of Voxel Bricks

• One child pointer

• Compact structure

• Cache efficient

1

1 2 3 4 5

4 5

2 3

GPU

GigaVoxels Rendering

GPU

CPU

Update structure

Output ImageGigaVoxels

Ray-Tracer

Sparse Voxel

Octree

Pyramid

GPU

Cache

manager

On-disc

data

producer

Hierarchical Volume Ray-Casting

 Render semi-transparent

materials

 Participating medias

 Emission/Absorption model

for each ray

 Accumulate Color intensity +

Alpha

 Front-to-back

○ Stop when opaque

Hierarchical Volume Ray-Casting

 Volume ray-casting

[Sch05, CB04, LHN05a, Olick08, GMAG08, CNLE09]

 Big CUDA kernel

 One thread per ray

 KD-restart algorithm

 Ray-driven LOD

Volume Ray-Casting

1

2 3

4 5

6 7 8 9

1

2

4 5

6 7

3

Tree

Descent

Brick

Marching

Brick

Marching

Brick

Marching

Skip

Node

Per-ray LOD

evaluation

Ray traversal

Rendering costs

Volume MipMapping mechanism

Problem: LOD uses
discrete downsampled
levels

 Popping + Aliasing

 Same as bilinear only for
2D textures

 Quadrilinear filtering

 Geometry is texture

 No need of multi-
sampling (eg. MSAA)

L0

L1

L2

L3

MipMap zones MipMap pyramid

GigaVoxels Data Management

GPU

CPU

Update structure

Output ImageVoxel Ray-

Tracer

Sparse Voxel

Octree

Pyramid

GPU

Cache

manager

On-disc

data

producer

1

Incremental octree update

 Progressive loading

1

2 3

4 5

Pass 2

Pass 3Pass 4

Wrong LOD

Wrong LOD

1 2 3 4 5

N
o

d
e

 p
o

o
l

B
ri
c
k
 p

o
o

l

Data

request

2 3
Data

requests

4

Data

request

(Constant value)

(Max opacity)

Pass 1

(Node not

reached)
(LoD OK)

No Data

Ray-based visibility & queries

Zero CPU intervention

 Per ray frustum and visibility culling

On-chip structure management

 Subdivision requests

○ LOD adaptation

 Cache management

○ Remove CPU synchronizations

GigaVoxels Data Management

GPU

CPU

Update structure

Output ImageVoxel Ray-

Tracer

Sparse Voxel

Octree

Pyramid

GPU

Cache

manager

On-disc

data

producer

SVMP cache

 Two caches on the GPU

 Bricks

 But also tree

 No maximal tree size

Usage sorted nodes addresses

Oldest Newest

SVMP caches

 GPU LRU (Least Recently Used)
 Track elements usage

 Maintain list with least used in front

Octree/Bricks Pool

Cache Elements (Node Tile/Brick)

Stream

compaction

Used nodes mask

Stream

compaction

Concatenate

New elements

New data

 Minimum amount of data is loaded

 Fully compatible with secondary rays and
exotic rays paths

 Reflections, refractions, shadows,
curved rays, …

Just-in-Time Visibility Detection

Voxel sculpting

 Direct voxel scultping

 3D-Coat

○ Like ZBrush

 Generate a lot of details

Voxel data synthesis

 Instantiation

 Recursivity

 Infinite details

Free voxel objects instancing

 BVH based structure
 Cooperative ray packet traversal [GPSS07]

 Shared stack

 WA-Buffer
 Deferred compositing

Cool Blurry Effects

 Going further with 3D MipMapping
 Full pre-integrated versions of objects

 Idea: Implements blurry effects very
efficiently
 Without multi-sampling

 Soft shadows

 Depth of field

 Glossy reflections…

Let’s look more closely at what we are doing…

 For a given pixel:
 Approximate cone

integration
○ Using pre-integrated data

○ With only one ray !

 Voxels can be modeled as
spheres
 Sphere size chosen to match

the cone
○ Linear interpolation between

mipmap levels

 Samples distance d
 Based on voxels/spheres

size

Image

Plane Cubical voxel

footprint

One pixel

footprint

Pixel Color+Alpha

Soft shadows

 Launch secondary rays

 When ray hit object surface

 Same model as primary rays

 MipMap level chosen to

approximate light source cone

 Compatible with our cache

technique

 Resulting integrated opacity

 Approximated occlusion

Light source

Occluder

Depth-Of-Field

 Similarly for depth-
of-field…

 MipMap leveld
based on circle-of-
confusion size

Lens

Image

plane

Apperture

Plane in

focus

Illustration courtesy of GPU Gems

Conclusion

 Unlimited volume data at interactive rates

 Minimal CPU intervention

 Several game techniques can benefit from

our algorithm

Many thanks go to …

 Digisens Corporation

 Rhone-Alpes Explora’doc program

 Cluster of Excellence on Multimodal

Computing and Interaction (M2CI)

 3D-Coat and Rick Sarasin

 Erklaerbar

Any questions ?

But there is a little problem…

 Let’s see more closely what
we are doing:
 Approximate cone integration

○ Using pre-integrated data

 But the integration function is
not the good one !
 Emi/Abs model used along rays

○ But pre-integration is a simple
sum

 Result:
 Occluding objects are

merged/blended

 Virtually not noticeable for little
ray-steps

Image

Plane

Cubical voxel

footprint

One pixel

footprint

Emission/Absorption model

 Equation of transfer
 q : Source term

 Kappa: absorption

What we would like

 Tangential integration: Sum

 Depth integration: Equation of transfer

 But still avoiding multi-sampling

 Is it commutative ? Not sure how far we can

approximate like this…

Possible solutions

 Anisotropic pre-integration
 Similar to early anysotropic

filtering methods

 “2D” mipmapping
○ 1 axis kept unfiltered

 Interpolate between axis at
runtime

 Problems:
 Storage

 Sampling cost !

Possible solutions

 Full Anisotropic pre-integration
 Pre-integrate both parts

○ Light-Transmitance

○ Screen-space average

 Interpolate between axis at
runtime

 Problems:
 Storage !

 We would like to stay
anisotropic…
 Or to reduce storage problem

Possible solutions

 Spheres subtraction

 Problem:

 Sampling cost

 Any better idea ?

Lighting problem

 How to pre-filter lighting ?

 Pre-filter Normals

○ How to store them ?

○ How to interpolate them ?

○ Lobes de normales ?

 Compute gradients on the fly ?

